

Welcome to Java 8 tutorial!

Contents:

	1. Quick Introduction

	2. Behavior Parameterization

	3. Lambdas
	3.1. Type Inferencing

	3.2. Accessing outer scope variables

	3.3. Restrictions in Lambdas

	3.4. Where to use Lambdas

	4. Functional Interfaces
	4.1. @FunctionalInterface rules

	4.2. Predicate<T>

	4.3. Consumer<T>

	4.4. Function<T, R>

	4.5. Supplier<T>

	4.6. Primitive Functional Interfaces

	4.7. Method References

	4.8. Constructor as method reference

	5. Introduction to Streams
	5.1. Stream vs Collection

	5.2. Stream sources

	5.3. Stream Operations

	6. Stream API
	6.1. Filtering

	6.2. Truncating Stream

	6.3. Consuming Stream

	6.4. Mapping

	6.5. Matching

	6.6. Finding element

	6.7. Stream Reduction

	6.8. To Array

	6.9. Infinite Streams

	7. Comparator
	7.1. Comparators

	7.2. Updates in Comparator

	8. Collectors
	8.1. How Collector works?

	8.2. Implementing collectors

	9. Predefined Collectors
	9.1. Collecting as collections

	9.2. Strings joining

	9.3. Grouping elements

	9.4. Partitioning elements

	9.5. Reducing collectors

	9.6. Arithmetic & Summerizing

	9.7. Miscellaneous

	10. Handling nulls with Optional
	10.1. Optional Construction

	10.2. Operating on Optionals

	10.3. Retrieving from Optionals

	10.4. Miscellaneous

	11. Default and Static methods
	11.1. Default methods

	11.2. Multiple inheritance

	11.3. Static methods

	12. ForkJoinPool
	12.1. ForkJoinPool creation

	12.2. ForkJoinTask

	12.3. How fork-join works?

	13. Parallel Processing
	13.1. Parallel Streams

	13.2. Spliterator

	13.3. Conclusion

	14. Date Time API
	14.1. java.time package

	14.2. Common methods

	14.3. LoalDate, Time, Instant

	14.4. Duration & Period

	14.5. TemporalAdjusters

	14.6. Formatting & parsing

	14.7. Working with time zones

Indices and tables

	Index

	Module Index

	Search Page

1. Quick Introduction

Java 8 launched on 18th March 2014 and it was a next major release after jdk5. It came up with large set of scintillating features that has won the attention of most of the java programmers. It has enhanced various components like runtime environment, compiler, lexical parser, memory management, command line tools and many more. Java 8 will improve programmer’s coding experience with its enticed features of declarative programming, passing code as an argument, method reference, optional for handling null etc. It will assure you to write codes that will be more precise, highly readable and objective driven.

Passing methods as parameter removes verbosity from the code and in fact increases reusability, Streams helps in writing SQL like syntaxes, parallelization that is almost free:- speed of the execution with efficient use of modern computers having multicore processors, handling nullable values using Optional and many more. Initially stuffs will be little confusing but once you used to it, you will be reluctant to write code with out using it. Let’s look into the below usecase and understand why java 8 is different then all the releases.

Suppose we are trying to find the highest salary paid in each technology of a XYZ company. Before Java 8 the typical implementation could be

public Map<String, Double> method2(List<Employee> list) {
 Map<String, List<Employee>> temp = new HashMap<>();
 for (Employee e : list) {
 temp.putIfAbsent(e.getTechnology(), new ArrayList<>());
 temp.get(e.getTechnology()).add(e);
 }

 Map<String, Double> map = new HashMap<>();
 for (Entry<String, List<Employee>> ent : temp.entrySet()) {
 double max = 0;
 for (Employee e2 : ent.getValue()) {
 max = Double.max(max, e2.getSalary());
 }
 map.put(ent.getKey(), max);
 }
 return map;
}

Let’s rewrite this code snippet in Java 8 way.

Map<String, Double> map = list.stream().collect(
 groupingBy(Employee::getTechnology, -- Grouping on technology
 mapping(Employee::getSalary, -- Scale to salary from Employee object
 collectingAndThen(maxBy(Comparator.naturalOrder()), -- Find the maximum among them
 Optional::get))));

Isn’t it great. I just said “group on technologies” then extract salary from the employee object and finally get me the highest value from each group. Here my code is objective oriented and easy understandable. If you look into the first approch we are using a temporary intermediate map just to keep grouped data and then process it to find the desired result. Every time you implement this kind of funtionality, you will write these boilerplate codes, but now java does these extra coding and returns result to you. You still might be thinking older approach is good because of the confusions and we are not ready to think in functional programming way.

Below are the topics we will investgate in this tutorial. I am excited to walk you through these features, so let’s get started.

	What is a functional programming and Functinal interface?

	java.util.stream.Stream and its operations

	Collector and Collectors

	Forkjoin Pool and Spliterators

	How to use parallel streams?

	Nullable values with Optional

	java.util.time package

2. Behavior Parameterization

Behavior parameterization is the ability of a method to receive multiple different behavior as its parameter and use them internally to accomplish the task. It let you to make your code more adaptive to changing requirements and saves the engineering effort from writing similar piece of code here and there.

If you have come across some of the behavioral design patterns like Strategy Pattern then you know we create set of similar algorithms and choose required one at run time to deal with a certain problem scenario. This type of techniques facilitate to add new behaviors in future. Let’s look into a problem statement to understand better.

Suppose a company XYZ is trying to group its employees based on certain criterias like proficiency level, technology type, gender etc or new criterias can be added in future. So to solve this problem we will create family of grouping algorithms as described below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 interface Groupable {
 public String findGroup(Employee e);
 }

 class GroupByExperience implements Groupable {

 @Override
 public String findGroup(Employee e) {
 return e.yearsOfExpr >= 7 ? "Expert" :
 e.yearsOfExpr >= 3 ? "Intermediet" : "Fresher";
 }
 }

 class GroupByTechnology implements Groupable {

 @Override
 public String findGroup(Employee e) {
 Map<String, List<String>> mapping = new HashMap<String, List<String>>() {
 {
 put("Front-end", Arrays.asList("AngularJS", "ExtJS"));
 put("Middleware", Arrays.asList("Java", ".Net"));
 put("Back-end", Arrays.asList("Oracle", "MySQL", "PostgreSQL"));
 }
 };

 for (Entry<String, List<String>> entry : mapping.entrySet()) {
 if (entry.getValue().contains(e.technology)) {
 return entry.getKey();
 }
 }
 return "Others";
 }
 }

Based on our purpose we are passing the required behaviors to the grouping function which is just creating groups.

public Map<String, List<String>> group(List<Employee> list, Groupable behavior) {
 Map<String, List<String>> map = new HashMap<>();
 for (Employee e : list) {
 String group = behavior.findGroup(e);
 map.putIfAbsent(group, new ArrayList<>());
 map.get(group).add(e.name);
 }
 return map;
}

Great… We solved the problem, as and when new requirements comes we just need to provide some other implementation classes. But from begining we are talking, one of our main objective is to remove verbosity from the code as well as maintain the understandability. If you look into the GroupByExperience class, the behaviour is of one liner but still complete class has been written. Another way can be writting Anonymous classes which some what reduces these boilerplate codes but not to the great extent.

Just think, if the interface Groupable was given by java SDK itself and we were written only the method and passed to the grouping function, then the code will be clearer and more flexible. Some of the interpreted langauges like python, JavaScript etc support passing of method as parameter to the calling function, similarly Java 8 has also started supporting it with the help of Functional Interfaces and Lambdas. Most of us already aware of Lambdas which is a very well-known concept that exist from the begining of languages like python. Don’t worry about them now, we will slowly have deep drive into it.

3. Lambdas

In previous chapter we thought of removing GroupByExperience class, only the method body should be given to our group() function and Lambdas are the best examples of implementing them. Lambdas give us the ability to encapsulate a single unit of code block and pass on to another code. It can also be considered as anonymous function which doesn’t have any function name but has list of parameters, function body, returns result and even throws exceptions. Below is the code statement if we convert our GroupByExperience class to a lambda expression.

(Employee e) -> { return e.yearsOfExpr >= 7 ?
 "Expert" : e.yearsOfExpr >= 3 ? "Intermediet" : "Fresher"; }

Basically Lambda has 3 parts.

	A list of parameters : In above example “Employee e”

	Function body : The behavior (right hand side of arrow)

	An arrow : Separator between parameter list and function body

Note

Lambda syntax follows some of the below rules.

	Parameter types are optional.

	If you have single parameter then both parameter type and parenthesis are optional.

	If you have multiple parameters, then they should be enclosed with in parenthesis.

	For multiple statements in function body should be enclosed with in courly braces.

	If lambda body exnclosed inside courly braces then return keyward is required in case your behavior returns value.

With applying above rules our GroupByExperience class can be writtten in following ways.

e -> { return e.yearsOfExpr >= 7 ?
 "Expert" : e.yearsOfExpr >= 3 ?
 "Intermediet" : "Fresher"; }

e -> e.yearsOfExpr >= 7 ?
 "Expert" : e.yearsOfExpr >= 3 ?
 "Intermediet" : "Fresher"

Below are some more examples of lambda expressions.

	
	BiConsumer<List, Integer> addIntoList = (List list, Integer element) -> list.add(element);

	Adding an element to a given list.

	
	Predicate<Employee> isJavaEmp = e -> “Java”.equals(e.technology);

	Checking an employee is is from Java technology.

	
	Supplier<Integer> uniqueKey = () -> new Random().nextInt();

	Generate a unique number with the help of generator.

We saw couple of more lambda expressions above but what are these left hand side classes (BiConsumer, Predicate etc). If you remember in behavior parameterization chapter I mentioned, what if Groupable interface were given by java it self then we don’t have to write our own interfaces or abstract classes to give different different implementations. Java 8 has already came up with bundle of general purpose functional interfaces which are included as part of JDK and we are going to visit them soon.

Now we have some ideas on how lambdas look like and their syntaxes. Just look into the below two lambda expressions.

1. Runnable runnable = () -> "I love Lambdas".length();
2. Callable<Integer> ca = () -> "I love Lambdas".length();

Both of expressions look similar except the left hand side target types. You would be thinking how does it possible to assign same object to two different types of references. Is the Callable extends Runnble or vice-versa? The answer is a big NO, this is possible due to the type inference feature which decides the target type depending upon the context where it is used.

3.1. Type Inferencing

There has been much more improvent in compiler intelligence level that it takes advantage of target typing to infer the type parameters of a generic method invocation. When inially Generics introduced in JDK 1.5, the type of generic was mandatory in both side of the expression. For example:

List<String> list = new ArrayList<String>();

But in JDK 1.7 right hand side generic type become optional by changing it to the diamond(<>) operator where type is evaluated from it’s left hand side target type declaration. Still there were some limitations in generic type evaluation.

1. List<String> l = Arrays.asList();

2. List<String> list = new ArrayList<>();
 list.addAll(Arrays.asList());

If you compile above code in JDK 1.7, then the statement-1 will be compiled successfully but not statement-2 and it will generate The method addAll(Collection<? extends String>) in the type List<String> is not applicable for the arguments (List<Object>) error message. So what really happened in statement-2 where as both of the statements looks similar. Just look into the signatures of these methods.

	Method Signatures

	public static <T> List<T> asList(T… a)

public boolean addAll(Collection<? extends E> c)

The asList() is a type safe method which is able to infer its return type based on the given direct target type but in addAll() case, compiler didn’t have idea to deduce the type when applied on method parameter as target type and asList() method returned List<Object> that is incompatible with List<String> reference. Java 8 has enhanced this type inferencing technique to deal with such wierd scenarios. Now let’s see how type inferencing works in lambda expressions.

The type of lambda is deduced from the context where it is used. If we take our earlier example of Runnable and Callable, the signature of lambda expression matches with the singature of run() and call() methods. Runnable class run() method neither accept any argument nor return anything. Our lambda expression () -> "I love Lambdas".length() also doesn’t supply any parameter.

For run() method fully described lambda expression is
() -> {
 "I love Lambdas".length();
}

and for call() it is
() -> {
 return "I love Lambdas".length();
}

Java compiler always looks for a matching functional interface to associate with the lambda expression from it’s surrounding context or target type. Compiler expects you to use lambda expresssion in following places such that it can determine the target type.

	Variable declarations

	Assignment statements

	Return statements

	Method or constructor arguments

	Lambda expression bodies

	Ternary expressions (?:) etc

For method or constructor arguments, the compiler determines the target type with two other language features: overload resolution and type argument inference. Look into the below code snippet.

public static void main(String[] args) throws Exception {
 execute(() -> "done"); // Line-1
}

static void execute(Runnable runnable) {
 System.out.println("Executing Runnable...");
}

static void execute(Callable<String> callable) throws Exception {
 System.out.println("Executing Callable...");
 callable.call();
}

/* static void execute(PrivilegedAction<String> action) {
 System.out.println("Executing PrivilegedAction...");
 action.run();
} */

Output: Executing Callable...

Here we have two overloaded methods: Runnable and Callable. When you call the execute method with the mentioned lambda, the execute(Callable) will be called because the lambda () -> "done" says I am not accepting any argument but I will be returning done and Callable.call() method can return something.

Note

Don’t be confused with why Runnable is not called. In lambda () -> "done", “done” is a return statement not any assignment statement so that Void will be returned. Suppose lambda exxpression would be () -> {String s = "done";} then it must have called Runnable.

Now just uncomment execute(PrivilegedAction) method and try to reexecute and this time you will get compilation error: The method execute(Callable<String>) is ambiguous for the type Lambdas. The reason is both the last two execute() methods are capable to return and compiler found the ambiguous methods. So to resolve this you have to explicitly type cast the lambda expression as below.

execute((Callable<String>) (() -> “done”));

3.2. Accessing outer scope variables

	Some of the rules applicable for anonymous classes are also applicable to Lambdas:

	
	Lambda has access to members of its enclosing scope. (see line-1)

	Like nested class or anonymous class, it can also shadows any other declarations in the enlosing scope that is of same name. (see line-2)

public class LambdaFeatures {
 private int x = 10;

 public void example() {
 Consumer<String> funcInterface = str -> {
 System.out.println("x= " + x); // Line-1

 int x = 50; // Line-2
 System.out.println("x= " + x);
 };
 }
}

Output: x= 10
 x= 50

3.3. Restrictions in Lambdas

Lambda has some restrictions:

	You can’t declare any static or non-static initializers.

	It cann’t access local variables in its enclosing scope that are not defined final or effectively final. This restriction exists with anonymous class also. Let’s discuss why is this limitation with following code snippet.

public class LambdaFeatures {
 int y = 50;

 public static void main(String[] args) throws Exception {
 int x = 50;

 Thread tt = new Thread() {
 public void run() {
 System.out.println("MyThread start.");

 Thread.sleep(1000L);

 System.out.println("MyThread end. x=" + x);
 }
 };

 t.start();

 x++;
 System.out.println("main end");
 }
}

Local variables stored in the stack where as instance variables stored in heap. In the above code snippet main thread declares variable “x” and also creates a Thread which is trying to use this x variable. As we know local variables will be stored in the local stack (here stack of main) and when thread “tt” will be created it will executed separate to main thread. There might be chances that main will be completed first and the stack will be released before thread tt trying to use it. So if variable is declared final, them lambda will take a copy of it and use whenever require.

3.4. Where to use Lambdas

We have discussed enough on lambdas and anonybmous classes. Let’s discuss the scenarios where should we use them.

	Anonymous class: Use it whenever you want to declare some additional fields (member variables) or methods which lambda cann’t do.

	
	Lambda:

	
	Use it if you want to encapsulate a single unit of behavior and pass to some other code. For example: performing certain operation on each element of collection.

	Use it if you need a simple instance of a functional interface where you do not need a constructor, a named type, fields, or additional methods.

 5. Introduction to Streams

5. Introduction to Streams

Streams are one of the bigwig among java8’s released features that let you write codes in declarative pipeline style rather than typical imperative programming technique. Declarative programming expect you to mention what you want not how to achieve them. Many of the technologies like unix, database etc are already working on this fashion. In database we write SELECT technology, max(salary) from employee group by technology and it returns highest salary paid in each technology. In case of unix we just combine group of commands (ls -l | grep “search string” | sort) and ask unix to execute the operations.

Just look into the below example.

public static void main(String[] args) {
 List<Trade> trades = TradeData.allTrades();
 Comparator<Trade> comparator = Comparator.comparing(Trade::getNotional);
 List<String> naTrades = trades.stream()
 .filter(trade -> Region.NA.equals(trade.getRegion()))
 .sorted(comparator)
 .map(Trade::getTradeId)
 .collect(toList());
 System.out.println(naTrades);
}

In this code snippet we just created a pipeline of tasks and java8 will prepare the execution strategy internally to process it. Here we didn’t write any external foreach loop to traverse through all the elements, it will be internally taken care. If you wish to process trades parallely no need to write any extra multi-threaded code to do it, just replacing the stream() with parallelStream() that will handle the whole parallelism. Don’t wory about parallelism now, we will look into it later.

Note

Technically stream is a sequence of elements from a source. Source can be anything like collections, arrays, generator functions or I/O resources etc.

5.1. Stream vs Collection

Most of the time collections are one of the main source for stream to act on. Stream and collection are used togather, they don’t replace each other. Streams differ from collection in several ways:

	No storage: Collections are typically physical set of data where as streams are a logial view that will be given to the pipeline of operations. Collections are about data and streams are about computations.

	Functional in nature: An operation on a stream produces a result, but does not modify its source. For example, if we call filtering on a stream it will return a new stream rather than removing them from the original collection.

	Lazy in execution: Many of stream operation like filtering, mapping etc are chained togather and executed in one shot using a terminal operation. This technique helps to create optimized execution strategy to process the operations. For example, to find first three odd numbers from a stream it doesn’t go through the complete data set and halts the execution once three values found.

	Possibly unbounded: While collections have a finite size, streams need not. Short-circuiting operations such as limit(n) or findFirst() can allow computations on infinite streams to complete in finite time.

	Consumable: The elements of a stream are only visited once during the life of a stream. Like an Iterator, a new stream must be generated to revisit the same elements of the source. If the source is FileInputStream, then you are out of luck because inputstream will be closed once consumed and you cann’t regenerate the stream.

5.2. Stream sources

In above section we saw collections and InputStream are two sources for streams. There are few more as well where you can generate streams.

	From a Collection via the stream() and parallelStream() methods;

	From an array via Arrays.stream(T[]);

	From static factory methods on the stream classes, such as Stream.of(T[]), IntStream.range(int, int) or Stream.iterate(T, UnaryOperator);

	The lines of a file can be obtained from BufferedReader.lines();

	Streams of file paths can be obtained from methods in Files;

	Streams of random numbers can be obtained from Random.ints();

Apart from all of these predefined sources, you can also generate stream from your custom source using StreamSupport class. Example:

public class TradePool {
 List<Trade> list;

 public Stream<Trade> stream() {
 return StreamSupport.stream(list.spliterator(), false);
 }
}

StreamSupport has some low-level methods which expects you to provide a spliterator that will generate stream. As of now don’t worry about spliterator, just think it is an iterator; We will cover spliterator once we are ready to go for parallelization because you need to know ForkJoinPool to understand how parallelization works.

5.3. Stream Operations

Stream operations are broadly categorised into intermediate and terminal operations that are combined to form pipeline. A stream pipeline consists of a source (such as a Collection, an array, a generator function, or an I/O channel); followed by zero or more intermediate operations such as Stream.filter or Stream.map; and a terminal operation such as Stream.forEach or Stream.reduce.

[image: Stream Operations]

	Intermediate Operations: Intermediate operations helps the stream pipeline to build the execution strategy. These are lazy in nature, they don’t get execute until a terminal operation is invoked. They don’t modify the original stream, everytime they return a new stream. Intermediate operations can again divided into stateless and stateful operations.

	Stateless operations such as filter, map are processed independently of operations on other elements.

	Stateful operations such as sorted, distinct require to rememeber the result of operations on already seen elements to calculate the result for next element. They execute the entire input before producing final result.

	Terminal Operation: Terminal operation traverse the stream and execute the pipeline of intermediate operations to produce the result. They are eager in nature. After the terminal operation is performed, the stream pipeline is considered consumed, and can no longer be used. A stream implementation may throw IllegalStateException if it detects that the stream is being reused.

Streams are also generated from infinite dataset. Some of the stream operations can be tagged as short-circuting operations which acts on these infinite stream or data. An intermediate operation is said to be short-circuting if applying on infinite stream should produce finite stream. As an example new Random().ints().limit(5) will return only 5 random numbers. A terminal operation is short-circuting if, when applying on infinite set of input should produce result in finite time. As an example new Random().ints().filter(no -> no % 10 == 0).findAny() will return any one random number divisible by 10.

 6. Stream API

6. Stream API

In the previous chapter we saw how streams are related to collections, various stream sources and kind of stream operations. In this chapter we will have an extensive look at various operations supported by stream API. java.util.stream.Stream [http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html] contains numerous methods that let you deal with complex data processing queries such as filtering, slicing, mapping, finding, matching and reducing both in sequential and parallel manner. There are also primitive specialization of streams used for primitive elements and contains additional operations min, max, sum etc.

6.1. Filtering

Stream interface provides a method filter which accepts a Predicate as argument and return a stream that matches the given predicate. The predicate will be applied to each element to determine if it should be included to new stream.

	Signature

	Stream<T> filter(Predicate<? super T> p)

// Finding words starts with vowel
List<String> words = Stream.of("apple", "mango", "orange")
 .filter(s -> s.matches("^[aeiou].*"))
 .collect(toList());

:Output: [apple, orange]

6.2. Truncating Stream

Stream supports the limit(n) method accepts a numeric value and returns a new stream consisting of the elements of this stream, truncated to be no longer than maxSize in length. If the stream length is less than the given size then complete stream will be returned.

limit will truncate the stream from end where as there is another method called skip(n) will discard elements from begining.

	Signature

	Stream<T> limit(long maxSize)

Stream<T> skip(long n)

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);
stream.filter(i -> i%2 == 0).limit(2).collect(toList());
stream.filter(i -> i%2 == 0).skip(1).collect(toList());

6.3. Consuming Stream

Stream provides two methods peek and forEach which accepts a Consumer as argument and performs the action on each element.

	Signature

	Stream<T> peek(Consumer<? super T> action)

void forEach(Consumer<? super T> action)

The peek is an intermediate operation which returns the new stream where as forEach is the terminal operation returns void.

Stream<Integer> stream = Stream.of(1, 2, -3, 4, 5);
stream.filter(i -> i%2 == 0).peek(System.out::println).toArray();
stream.filter(i -> i%2 == 0).forEach(System.out::println);

See also

forEachOrdered [http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEachOrdered-java.util.function.Consumer-], performs action on encontered order.

6.4. Mapping

A very common data processing idiom is to select information from a certain object. For example selecting trade id from an Trade object. Stream supports map method which accepts a Function as argument and returns a new stream consisting of the results of applying the given function to the elements of this stream.

	Signature

	<R> Stream<R> map(Function<? super T, ? extends R> mapper)

List<Trade> trades = new ArrayList<>();
trades.add(new Trade("T101", "Paul", 5000, "USD", APAC));
trades.add(new Trade("T102", "Mr Bean", 3580, "SGD", NA));
trades.add(new Trade("T103", "Simond", 2300, "CAD", EMEA))

trades.stream().map(Trade::getTradeId).collect(Collectors.toList());

Output: [T101, T102, T103]

[image: _images/map.png]
There are primitive variants of map methods mapToInt, mapToDouble and mapToLong that we will see later. Stream interface has method flatMap which returns a stream consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping function to each element. Sometime each element of a stream will produce individual streams that will be amalgamated into single stream and flatMap will be used there. It might be confusing you now so let see an example where you need to find distinct words contained in a file. Here we will use File.lines() which will return Stream<String> where each element will represent to a single line of the file.

List<String> words =
 Files.lines(Paths.get("flatmap.txt")) // Stream<String>
 .map(line -> line.split(" ")) // Stream<String[]>
 .map(Arrays::stream) // Stream<Stream<String>>
 .distinct()
 .collect(Collectors.toList());

System.out.println(words);

In the above code snippet each line will be splitted to array of words. Each array of words then passed to Arrays.stream() which will return Stream<String> for every line. map(Arrays::stream) will return Stream<Stream<String>> so our final output will be List<Stream<String>> where as our requirement is List<String>.

Now if you replace map(Arrays::stream) with flatMap(Arrays::stream) then all the elements from the each inner stream will be merged to a single outer stream.

[image: _images/flatmap.png]
List<String> words =
 Files.lines(Paths.get("flatmap.txt")) // Stream<String>
 .map(line -> line.split(" ")) // Stream<String[]>
 .flatMap(Arrays::stream) // Stream<String>
 .distinct()
 .collect(Collectors.toList());

System.out.println(words);

6.5. Matching

Stream API provides anyMatch, allMatch and noneMatch short-circuiting terminal operations which takes a Predicate as argument and returns a boolean result by applying the Predicate to the elements of the stream. Predicate might not be applied to all the elements if further execution is not require.

	anyMatch: Returns true if any element found matching with the predicate.Predicate will not be applied to other elements if any matching found.

	allMatch: Returns true if all elements are matching to the given predicate.

	noneMatch: Returns true if none of the elements are matching to the predicate.

Stream.of(5, 10, 15, 20).anyMatch(i -> i % 10 == 0);
Stream.of(5, 10, 15, 20).allMatch(i -> i % 5 == 0);
Stream.of(5, 10, 15, 20).noneMatch(i -> i % 3 == 0);

6.6. Finding element

Stream interface has findAny method which returns an arbitrary element from the stream. The behaviour of this operation is nondeterministic; it is free to select any element in the stream because in case of parallelization stream source will be divided into multiple chunks where any element can be returned. It also has findFirst method that returns the first element of the stream.

	Signature

	Optional<T> findFirst()

Optional<T> findAny()

If you see the signature of above two methods, they return an Optional object which is a wrapper describing absence or presence of the element because there might be chance that these operations were called on empty stream. Don’t worry about Optional now, use get() or orElse() methods to get value from the optional.

Stream.of(5, 10, 15).filter(i -> i % 20 == 0).findAny().orElse(0);
Stream.of(5, 10, 15).map(i -> i * 2).findFirst().get();

6.7. Stream Reduction

Stream interface supports overloaded reduction operations that continuously combines elements of the stream until reduced to single output value.

Suppose we need to calculate sum of array of numbers, then our code will look some what like below.

int[] arr = { 1, 2, 3, 4, 5, 6 };
int result = 0;
for (int num : arr) {
 result += num;
}

Now, I changed my requirement to calculate multiplication of elements of the array. So you will update your code to result=1 and then result *= num. So if you notice here all the time you will have an initialization logic, an iteration and an operation on the two elements, only your intial value and the operation varies.

To generalize these kind of tasks Stream API has provided overloaded reduce methods that does the same operation what we saw. If we re-write above codes then they will be

Arrays.stream(arr).reduce(0, Integer::sum)

Arrays.stream(arr).reduce(1, (i1, i2) -> i1 * i2)

	T reduce(T identity, BinaryOperator<T> accumulator)
The reduce operation here takes two arguments:

	identity: The identity element is both the initial value of the reduction and the default result if there are no elements in the stream. In the reduce(0, Integer::sum) example, the identity element is 0; this is the initial value of the sum of the numbers and the default value if no members exist in the array.

	accumulator: The accumulator function takes two parameters: a partial result of the reduction (in this example, the sum of all processed integers so far) and the next element of the stream (in this example, an integer). It returns a new partial result. In this example, the accumulator function is a lambda expression that adds two Integer values and returns an Integer value:

	Optional<T> reduce(BinaryOperator<T> accumulator)

This is almost equivalent to first reduction method except there is no initial value. Sometime you might be interested to perform some task in case stream has no elements rather than getting a default value. As an example if the reduce returns zero, then we are not sure that our sum is zero or it is the default value. Though there is no default value, its return type is an Optional object indicating result might be missing. You can use Optional.isPresent() to check presense of result.

[image: _images/reduce1.png]
Sequential reduction

	U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner)
In first two reduction operations your stream element type and return type were same means before using the reduce method you should convert your elements to type T from any other type. But there is an 3 arguments reduce method which facilitates to pass elements of any type. So here accumulator accepts previous partial calculated result and element of type T and return type U result. Below example shows the usage of all three reduction operations.

// Find the number of characters in a string.
List<String> words = Arrays
 .asList("This is stream reduction example learn well".split(" "));
int result = words.stream().map(String::length).reduce(0, Integer::sum);
Optional<Integer> opt = words.stream().map(String::length).reduce(Integer::sum);
result = words.stream().reduce(0, (i, str) -> i + str.length(), Integer::sum);

We saw the sample use of these reduction methods so let’s explore more on this 3-argument reduction operation.

public static void reduceThreeArgs(List<String> words) {
 int result = words.stream().reduce(0, (p, str) -> {
 System.out.println("BiFunc: " + p + " " + str);
 return p + str.length();
 }, (i, j) -> {
 System.out.println("BiOpr: " + i + " " + j);
 return i + j;
 });
}

output:
BiFunc: 0 This
BiFunc: 4 is
BiFunc: 6 stream
BiFunc: 12 reduction
BiFunc: 21 example
BiFunc: 28 learn
BiFunc: 33 well

If you have noticed accumulator function itself calculated the final result and it didn’t even use the last parameter BinaryOperator combiner at all then what the combiner is doing here. So the answer here is parallelization. In the begining of the tutorial I told you parallelization is almost free, there will be very minimal modification (use parallelStream method) require to run your code in parallel. This is not the right time to learn parallelization but i will give you some overal idea just to get the visibility of combiner in this reduction operation.

In parallelization the whole input data set is splitted to multiple chunks, each chunk process individually and combine all the results at the end. So in the above example, complete word set are splitted to groups then they will calculate total number of characters in each group finally sum all these partial results.

[image: _images/parallel_reduction.png]
Parallel reduction

Now re-run the code in parallel (words.parallelStream()…) and look into the output. Combiner calculate the sum of two partial results.

BiFunc: 0 This
BiFunc: 0 stream
BiFunc: 0 well
BiFunc: 0 learn
BiOpr: 5 4
BiFunc: 0 reduction
BiFunc: 0 example
BiOpr: 9 7
BiOpr: 16 9
BiFunc: 0 is
BiOpr: 2 6
BiOpr: 4 8
BiOpr: 12 25

6.8. To Array

Stream interface supports two overloaded toArray methods that will collect stream elements as an array.

	
	Object[] toArray():

	This is the simplest form of toArray operation which returns an Object array of length equal to Stream length.

Example: Integer[] arr = Stream.<Integer>of(10, 20, 30, 40, 50).toArray();

	
	T[] toArray(IntFunction<T[]> generator):

	You saw the first toArray method always returns array of Object type, but this overloaded method will return array of desired type. It accepts an IntFunction as argument that describes the behaviour of taking array length as input and returns the array of generic type.

Employee[] arr = employees.stream().filter(e -> e.getGender() == MALE)
 .toArray(Employee[]::new);

 OR

 employees.stream().filter(e -> e.getGender() == MALE)
 .toArray(len -> new Employee[len]);

6.9. Infinite Streams

We already discussed, Streams can be derived from different sources:

	From array - Arrays.stream(T[])

	From known elements - Stream<String>.of(“Stream”, “is”, “great”)

	From file - Files.lines(Paths.get(“myfile.txt”))

Please visit the Stream sources section for basics of stream sources. The streams generated from above sources are bounded streams where elements size is known. Stream interface supports two static methods Stream.iterate() and Stream.generate which returns infinitite streams that will produce unbounded stream. As generated stream will be unbounded , it’s necessary to call limit(n) to convert stream into bounded.

Note

You can use findAny or findFirst terminal operations to terminate the stream if you assure required result is exist in the stream. Example:
Stream.<Integer>iterate(1, v -> v + 3).filter(i -> i % 5 == 0).findAny().get())
Here we are sure that there will be an element which will be divisible by 5 so you can use findAny to terminate the stream.

	
	Stream.iterate:

	: Signature: Stream<T> iterate(T seed, UnaryOperator<T> f)

It returns an infinite sequential ordered Stream produced by iterative application of the given function. The function here is a UnaryOperator which uses the previous calculated result to produce next result. It also accepts a seed value that will be supplied to the UnaryOperator as initial value.

// Generating fibonacci numbers of a given length
Stream.iterate(new int[] { 0, 1 }, a -> {
 int next = a[0] + a[1];
 a[0] = a[1];
 a[1] = next;
 return a;
}).limit(10).map(a -> a[0]).forEach(System.out::println);

Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

	
	Stream.generate:

	: Signature: Stream<T> generate(Supplier<T> s)

It returns an infinite sequential unordered stream where each element is generated by the provided Supplier. As we know Supplier doesn’t accept any argument so the generator doesn’t depend on previously calculated value. Below example generates UUID values of a given length.

Stream.generate(UUID::randomUUID).limit(5).forEach(System.out::println)

 7. Comparator

7. Comparator

Comparator is there since jdk 1.2 and we all know its usage and importance. Java-8 came up with few updates to the Comparator as given below.

	Additionl default and static methods were added into Comparator interface to support pipeline of stream operations.

	String class added with CaseInsensitiveComparator to sort by ignoring the case.

	A new utility class Comparators is bundled with jdk-8 to support natural ordered sorting and handling null values while sorting.

7.1. Comparators

Comparators is a helper class that provides new Comparator implmentations in the following cases.

	To impose natural ordrered sorting on elements of Comparable types

	Sorting on the collections that mixed with null values.

Natural ordering:

NaturalOrderComparator implements Comparator<Comparable<Object>> {

 @Override
 public int compare(Comparable<Object> c1, Comparable<Object> c2) {
 return c1.compareTo(c2);
 }
}

Comparator interface contains a static method called naturalOrder which returns a NaturalOrderComparator that imposes sorting on elements implementing Comparable. As you know all wrapper classes for primitive types implements Comparable interface so this natural ordered sorting can be applicable to all of them.

Handling null elements:

Usually comparators throws NullPointerException if null elements found while performing sorting operation. Comparator contains two methods nullsFirst and nullsLast that takes a comparator as an argument and returns another null-friendly comparator by wrapping the given comparator. It will arrange null elements at the begining or end depending on the operation you called. For non-null elements it will sort them using the comparator passed initially.

7.2. Updates in Comparator

Comparator interface contains some of static methods that returns another comparator implementations described below.

	
	comparing(Function<T,U> keyExtractor)

	This method uses the given key extracting function that applies on T type elements to generate U type comparable sort keys. To compare two elements of type T, it first applies the key extracting function to both the elements and then performs the sorting operation on the resulted keys.

// Sorting words based on word lengths
Function<String, Integer> keyExtractor = str -> str.length();
Stream.of("grapes", "milk", "pineapple", "water-melon")
 .sorted(Comparator.comparing(keyExtractor))
 .forEach(System.out::println);

In the above code snippet a Function<String, Integer> keyExtractor object is passed to the comparing method that in turn will return a Comparator object. It first applied the function to string elements and generated string lengths then returned a comparator definition as given below.

Comparator<Integer> c = (s1, s2) -> keyExtractor.apply(s1).compareTo(keyExtractor.apply(s2))

	
	comparing(Function<T,U> keyExtractor, Comparator<U> keyComparator)

	In the first comparing method, key extracting function returns sorting keys of Comparable type so it doesn’t need additional Comparator object to perform sorting. But in this comparing function it first uses the key extracting function to generate key and then performs sorting based on the given comparator.

Stream.of("grapes", "milk", "pineapple", "water-melon")
 .sorted(Comparator.comparing(String::length, Comparator.reverseOrder()))
 .forEach(System.out::println);

	
	comparingXXX(ToXXXFunction<T> keyExtractor)

	Comparator interface provides three primitive comparing functions: comparingInt, comparingDouble and comparingLong to sort the elements based on the primitive keys. It accepts ToXXXFunction functional interface which returns primitive values that avoid unnecessary boxing-unboxing costs while doing sorting.

// Natural order sorting by ignoring the sign.
Stream.of(-10, 31, 16, -5, 2)
 .sorted(Comparator.comparingInt(i -> Math.abs(i)))
 .forEach(System.out::println);

	
	thenComparing(Comparator<T> other)

	It is very much possible that two elements will be equal according to the given comparator. In such cases the other comprator decides the sorting order. Below code snippet shows example of sorting employee objects based on employee’s salary and then uses name if two salaries are equal.

List<Employee> employees = Application.getEmployees();
employees.stream()
 .sorted(Comparator.comparing(Employee::getSalary).thenComparing(Employee::getName))
 .forEach(System.out::println);

 8. Collectors

8. Collectors

In the Stream API section we saw some of the terminal operations: toArray, reduce, forEach etc used to calculate the end result from the pipeline of intermediate operations. Stream interface contains a most frequently used terminal operation collect that performs the reduction operation on the elements of the stream using Collector interface.

Collector is nothing but a mutable reduction operation that accumulates elements from the stream into a mutable container and finally it returns either the same result container or a different representation of the container dependening on the characteristics given. Reduction operations can be performed either sequentially or in parallel.

Examples of mutable reduction operations include: accumulating elements into a Collection; concatenating strings using a StringBuilder; computing summary information about elements such as sum, min, max, or average; collecting elements as groups etc.

8.1. How Collector works?

Collector divides the complete reduction process to four sub-tasks that best fits to any type of reduction operation. They are:

	supplying a new empty result container at the begining

	accumulating new data element into the result container

	combining two result containers into one in case of parallelization

	performing an optional final transformation on the container

All of these sub-tasks may or may not be needed for every operation but these are the generalized form of the complete process. Collectors also have a set of characteristics, such as Characteristics.CONCURRENT, that provide hints to the reduction process to provide better performance. Collector.Characteristics enum contains three characteristics as:

	UNORDERED: Indicates that the collection operation does not commit to preserving the encounter order of input elements. This might be true if the result container has no intrinsic order, such as a Set.

	CONCURRENT: Indicates that this collector is concurrent, meaning that the result container can support the accumulator function being called concurrently with the same result container from multiple threads. Remember marking CONCURRENT doesn’t always execute concurrently, if not marked as UNORDERED or applied to an unordered data source like Set etc.

	IDENTITY_FINISH: Setting on this property returns the result container as the final result with out calling Collector.finish().

Collector interface contains below five methods to support all of the above subtasks.

interface Collector<T, A, R> {
 Supplier<A> supplier();
 BiConsumer<A, T> accumulator();
 BinaryOperator<A> combiner();
 Function<A, R> finisher();
 Set<Characteristics> characteristics();
}

In this listing the following definitions apply:

	T denotes the generic type of the stream elements

	A represents the type of the supplier or type of the accumulator where the partial results will be accumulated

	R is the type of result to be returned at the end. If the IDENTITY_FINISH characteristic is given then both A and R will be of the same type.

Let’s discuss the methods declared by the collctor interface:

	
	Supplier<A> supplier()

	The supplier method will return an empty result container whenever invoked. Remember, this method will be called only once if reduction operation is requested for sequential execution and multiple times if parallel execution.

	
	BiConsumer<A, T> accumulator()

	Accumulator will define the behaviour of the accumulation process. You might be already noticed that, though it is BiConsumer it takes partial result container and a new element as inputs and performs the configured task.

	
	BinaryOperator<A> combiner()

	Combiner defines what to be done if two partial results are provided. As we know in the parallelization case, the complete dataset will be splitted to multiple chunks and performed separately, so combiner will merge the two partial results into one. The BinaryOperator's functional descriptor is exactly matching with this task: (partial1, partial2) -> partial1.merge(partial2)

	
	Function<A, R> finisher()

	This defines the final transformation to be done to the result container after all the elements are processed.

	
	Set<Characteristics> characteristics()

	Returns the immutable set of Characteristics, defining the behavior of the collector.

8.2. Implementing collectors

Now we have enough idea on what are the methods collector interface provides and how does they work. So let’s implement our own collector that takes a set of Employee objects and generates a XML content.

public class Employee {
 public String name;
 public String empid;
 public String technology;
 public double salary;
}

public class ToXMLCollector implements Collector<Employee, StringBuffer, String> {

 final String xmlstr = "\n <employee eid='%s'>\n\t" + "<name>%s</name>\n\t"
 + "<tech>%s</tech>\n\t<salary>%s</salary>\n </employee>";

 public Supplier<StringBuffer> supplier() {
 return StringBuffer::new;
 }

 public BiConsumer<StringBuffer, Employee> accumulator() {
 return (sb, e) -> sb.append(String.format(xmlstr, e.empid, e.name, e.technology, e.salary));
 }

 public BinaryOperator<StringBuffer> combiner() {
 return (sb1, sb2) -> sb1.append(sb2.toString());
 }

 public Function<StringBuffer, String> finisher() {
 return sb -> String.format("<employees> %s \n</employees>", sb.toString());
 }

 public Set<Characteristics> characteristics() {
 return EnumSet.of(CONCURRENT);
 }

 public static void main(String[] args) {
 Set<Employee> emps = Database.employees();
 String xmlstr = emps.parallelStream().collect(new ToXMLCollector());
 System.out.println(xmlstr);
 }
}

Output:

<employees>
 <employee eid='E1001'>
 <name>Mr Bean</name>
 <tech>Cloud Computing</tech>
 </employee>
 <employee eid='E1002'>
 <name>J Smith</name>
 <tech>Java</tech>
 </employee>
</employees>

In this example we created a separate ToXMLCollector class by overriding all of the collector methods but Collector interface also has Collector.of utility method that accepts the collector behaviors and returns a anonymous Collector instance.

	
	Collector<T, A, R> of(Supplier<A> supplier, BiConsumer<A, T> accumulator,

	BinaryOperator<A> combiner, Function<A, R> finisher, Characteristics… characteristics)

	
	Collector<T, A, R> of(Supplier<A> supplier, BiConsumer<A, T> accumulator,

	BinaryOperator<A> combiner, Characteristics… characteristics)

Using these helper method our ToXMLCollector can also be implemented as:

Collector.<Employee, StringBuffer, String>of(StringBuffer::new,
 (sb, e) -> sb.append(String.format(xmlstr, e.empid, e.name, e.technology)),
 (sb1, sb2) -> sb1.append(sb2.toString()),
 sb -> sb.insert(0, "<employees>").append("\n</employees>").toString(),
 Collections.emptySet());

 9. Predefined Collectors

9. Predefined Collectors

In the previous chapter you got an overal idea on how does collector works and how to implement custom collectors. Java-8 has introduced java.util.stream.Collectors utility class containing many factory methods that provides most commonly used Collector implementations. These collectors mainly offers following functionalities:

	Collecting elements to a java.util.Collection

	Joining String elements to a single String

	Grouping elements by custom grouping key

	Partitioning elements into TRUE FALSE group

	Reducing operations

	Summerizing elements

These factory methods can also be combined to generate nested Collector that we will see while moving deeper.

9.1. Collecting as collections

Collecting stream elements to a java.util.Collection is the most widely used operation. Collectors class provide couple of methods that returns a collector which will then collect stream elements to a specific collection container.

	Collector<T, ?, List<T>> toList()

	Collector<T, ?, Set<T>> toSet()

	Collector<T, ?, C> toCollection(Supplier<C> collectionFactory)

	Collector<T, ?, Map<K,U>> toMap(Function<T, K> keyMapper, Function<T, U> valueMapper)

	
	toList():

	Returns a Collector that will accumulate stream elements into ArrayList in the encountered order.

List<String> list = Stream.of("java", ".net", "python")
 .map(String::toUpperCase).collect(Collectors.toList());

	
	toSet():

	Returns a Collector that will accumulate stream elements into HashSet object.

Set<String> set = Stream.of("java", ".net", "python")
 .map(String::toUpperCase).collect(Collectors.toSet());

	
	toCollection(Supplier<C> collectionFactory):

	The first two methods returns collectors using ArrayList and HashSet as the container, but in case you need some other Collection implementations then toCollection method can be helpful which accept a supplier representing the type of the container to be used for the accumulation process.

TreeSet<String> set = Stream.of("java", ".net", "python").map(String::toUpperCase)
 .collect(Collectors.toCollection(TreeSet::new));

	
	toMap(Function<T, K> keyMapper, Function<T, U> valueMapper):

	Returns a Collector that accumulates elements into a Map whose keys are derived from keyMapper function and values are from valueMapper function.

Map<String, Integer> result = Stream.of("java", ".net", "python")
 .collect(Collectors.toMap(String::toUpperCase, String::length));

Output: {JAVA=4, .NET=4, PYTHON=6}

Sometime it is very obvious that the keyMapper function will derive duplicate key either by same element in the stream or the mapper function is responsible for that. In such situtaion toMap will throw java.lang.IllegalStateException: Duplicate key. Collectors class has another overloaded method that takes a merge function to decide the action to be taken if duplicate key is found.

toMap(Function<T, K> keyMapper, Function<T, U> valueMapper, BinaryOperator<U> mergeFunction)

Map<String, Integer> result = Stream.of("java", ".net", "python", "jAvA")
 .collect(Collectors.toMap(String::toUpperCase, String::length, (value1, value2) -> value1));

Output: {JAVA=4, .NET=4, PYTHON=6}

Here we are passing a merge function that says “consider the value of first key if two keys are duplicates”. You can also provide some other merge function that will generate a composite key using both keys. The first two toMap methods will use HashMap as the accumulator container. Collectors has also a 4-args overloaded toMap method that takes a supplier to define the Map container type will be used for accumulation.

toMap(Function<T, K> km, Function<T, U> vm, BinaryOperator<U> mf, Supplier<M> mapSupplier)

9.2. Strings joining

Collectors utility class provides some of overloaded methods that concatenates stream elements into a single string either by separating them with a delimiter if provided.

	Collector<CharSequence, ?, String> joining()

	joining(CharSequence delimiter)

	joining(CharSequence delimiter, CharSequence prefix, CharSequence suffix)

The default delimiter for the no argument joining method is an empty string. The three argument joining method takes prefix and suffix which will be joined in the front and rear end of the final concatenated string result.

Stream.of("java", ".net", "python").collect(joining(", ", "Joined String[", "]"));

Output: Joined String[java, .net, python]

9.3. Grouping elements

A common database operation is to group records based on single or multiple columns similarly Collectors also provide factory method that accepts a classification function and returns a Collector implementing a “group by” operation on stream of elements T.

The classification function derives grouping keys of type K from stream elements. The collector produces a Map<K, List<T>> whose keys are the values resulting from applying the classification function to the input elements, and values are Lists containing the input elements which map to the associated key under the classification function.

Below is the entity class definition and the data we will be using through out the collector examples.

public class Trade {

 private String tradeId;
 private String trader;
 private double notional;
 private String currency;
 private String region;

 // getters and setters
}

Trade deals

	Trade Id

	Trader

	Notional

	Currency

	Region

	T1001

	John

	540000

	USD

	NA

	T1002

	Mark

	10000

	SGD

	APAC

	T1003

	David

	120000

	USD

	NA

	T1004

	Peter

	4000

	USD

	NA

	T1005

	Mark

	300000

	SGD

	APAC

	T1006

	Mark

	25000

	CAD

	NA

	T1007

	Lizza

	285000

	EUR

	EMEA

	T1008

	Maria

	89000

	JPY

	EMEA

	T1009

	Sanit

	1000000

	INR

	APAC

Now let’s group the trade deals according to country region.

Map<String, List<Trade>> map = trades.stream()
 .collect(Collectors.groupingBy(Trade::getRegion));

Output:
{
 APAC: [T1002, T1005, T1009],
 EMEA: [T1007, T1008],
 NA: [T1001, T1003, T1004, T1006]
}

In the above example we passed Trade.getRegion() as the classification function. grouping method will apply the given classification function to every element T to derive key K and then it will place the stream element into the corresponding map bucket. The grouping operation we just perfomed is very simple and straight-forward example but Collectors also support overloaded factory methods for multi-level grouping such as grouping trade detals according to region and currency.

groupingBy(Function<T, K> classifier, Collector<T, A, D> downstream):
This overloaded method accepts an additional downstream collector to which value associated with a key will be supplied for further reduction. The classification function maps elements T to some key type K and generates groups of List<T>. The downstream collector will then operates on each group of elements of type T and produces a result of type D, at last collector will produces a result of Map<K, D>.

Below example is grouping trade deals according to region and currency. The end result from this example will be Map<Region, Map<Currency, List<Trade>>>.

Map<String, Map<String, List<Trade>>> map2 = trades.stream()
 .collect(Collectors.groupingBy(Trade::getRegion,
 Collectors.groupingBy(Trade::getCurrency)));
System.out.println(map2);

Output:
{
 NA={CAD=[T1006], USD=[T1001, T1003, T1004]},
 EMEA={EUR=[T1007], JPY=[T1008]},
 APAC={SGD=[T1002, T1005], INR=[T1009]}
}

There is no limit on grouping, you can call nested grouping any number of times you want. Now let’s look into the groupingBy method signature once again. Does this method only meant for multi-level grouping? No. The method accepts a Collector as a second argument and we can do much more by passing different Collector implementations. Below example demonstrates counting number of deals in each region.

Map<String, Long> map2 = trades.stream()
 .collect(Collectors.groupingBy(Trade::getRegion, Collectors.counting()));

Output:
{NA=4, EMEA=2, APAC=3}

groupingBy(Function<T,K> f, Supplier<M> mapFactory, Collector<T, A, D> dc):
Just like toCollection method we saw in the begining, this method also facilitates to pass a map factory to decide the group container type. The default map object type is Hashmap so you can use this method if some other map type required.

See also

All these grouping collectors doesn’t guarantee on the thread-safety of the Map returned, so check Collectors.groupingByConcurrent methods for thread-safety operations. It internally uses ConcurrentMap implementation to deal with thread safety.

9.4. Partitioning elements

Partitioning a special type of grouping but it will always contain two groups: FALSE and TRUE. It returns a Collector which partitions the input elements according to a given Predicate and organizes them into a Map<Boolean, List<T>>. Following example shows partitioning deals to USD and no USD deals.

Map<Boolean, List<Trade>> map2 = trades.stream()
 .collect(Collectors.partitioningBy(t -> "USD".equals(t.getCurrency())));
System.out.println(map2);

Output:
{
 false=[T1002, T1005, T1006, T1007, T1008, T1009],
 true=[T1001, T1003, T1004]
}

9.5. Reducing collectors

Like java.util.stream.Stream, Collectors class also provides some overloaded reducing methods. To perform simple reduction operation on a stream, Stream.reduce(Object, BinaryOperator) methods can be used. The purpose of reducing() collectors are mostly for multi-level reduction operations. Following are list of overloaded reducing collectors given by Collectors class.

	reducing(T identity, BinaryOperator<T> op)

	reducing(BinaryOperator<T> op)

	reducing(U identity, Function<T,U> mapper, BinaryOperator<U> op)

Collectors reducing methods are similar to Stream.reduce operation. If you haven’t checked them, then see the Stream API section.

9.6. Arithmetic & Summerizing

Collectors also has some of methods that returns collector to perform arithmetic operations like finding max, min, sum and average. Below are the method defined in Collectors utility class.

	Collector<T, ?, Optional<T>> minBy(Comparator<T> comparator)

	Collector<T, ?, Optional<T>> maxBy(Comparator<T> comparator)

	Collector<T, ?, XXX> summingXXX(ToXXXFunction<T> mapper)

	Collector<T, ?, Double> averagingXXX(ToXXXFunction<T> mapper)

You don’t need me to explain what these method do as they are self explanatory. Collectors has individual summing and averaging methods for these three primitive types: int, double and long. As like reduction operations, arithmetic fuctions are also available in IntStream, DoubleStream and LongStream interfaces that can be used for simple stream reduction. These arithmetic collectors will be helpful for nested reduction operations through other collectors.

Apart from individual arithmetic operations, Collectors has also summarizingXXX factory methods that will perform all of these arithmetic operations all togather. The collector produced by summerizing function will return XXXSummaryStatistics class which is a container for holding results calculated for these arithmetic operations.

Method signature

	Collector<T, ?, DoubleSummaryStatistics> summarizingDouble(ToDoubleFunction<T> mapper)

The summarizingDouble method accepts a ToDoubleFunction that will apply on the stream elements of type T to generate double type values on which summarization functionality will be executed. Below example demonstrates the usage of summarizingDouble method.

Map<String, DoubleSummaryStatistics> map = trades.stream()
 .collect(Collectors.groupingBy(Trade::getRegion,
 Collectors.summarizingDouble(Trade::getNotional)));

DoubleSummaryStatistics naData = map.get("NA");
System.out.printf("No of deals: %d\nLargest deal: %f\nAverage deal cost: %f\nTotal traded amt: %f",
 naData.getCount(), naData.getMax(), naData.getAverage(), naData.getSum());

Output:
No of deals: 4
Largest deal: 540000
Average deal cost: 172250
Total traded amt: 689000

9.7. Miscellaneous

We saw grouping and partitioning functions that accepts another downstream collector used for nesting operations. Collectors utility also provides two additional methods mostly used for such nested complex situations.

	Collector<T,A,RR> collectingAndThen(Collector<T,A,R> c, Function<R,RR> f)

	Collector<T, ?, R> mapping(Function<T,U> mapper, Collector<U, A, R> c)

	collectingAndThen(Collector<T,A,R> downstream, Function<R,RR> finisher)

It will return a collector that will additionally perform a finishing transformation after the downstream collector collected elements. We will see few examples with explanation to get more clarity on the usage.

Set<Trade> set = trades.stream().collect(collectingAndThen(toSet(), Collections::unmodifiableSet))

In this example toSet collector will first collect elements to a set and then the resulting set will be applied to the finisher function to return a unmodifiable set. This is the simplest usage of collectingAndThen method and it has more meaning when used with nested collectors. Below code snippet demonstrates an advanced usage of the method that is finding maximum valued deal in each region.

Map<String, Optional<Trade>> map1 = trades.stream() // Solution-1
 .collect(groupingBy(Trade::getRegion, maxBy(comparing(Trade::getNotional))));

Map<String, Trade> map2 = trades.stream() // Solution-2
 .collect(groupingBy(Trade::getRegion,
 collectingAndThen(maxBy(comparing(Trade::getNotional)), Optional::get)));

We already know that Collectors.maxBy produces values of Optional types but actually we were expecting for Trade typed values. The collectingAndThen is first calculating the maximum valued deal wrapped with java.util.Optional and then passes to the finisher function to call Optional.get() which will then extract Trade object out of it.

[image: _images/collectingandthen.png]
Solution-2 flow diagram

	mapping(Function<T,U> mapper, Collector<U, A, R> downstream)

collectingAndThen() resulting collector first collect elements and then applies the transformation function but the mapping collector applies the mapper function before collecting elements. It returns a collector which applies the mapping function to the input elements and provides the mapped results to the downstream collector. As like collectingAndThen, the mapping() collectors are most useful when used in a multi-level reduction, such as downstream of a groupingBy or partitioningBy. For example, accumulate the set of trade ids in each region.

Map<String, Set<String>> map = trades.stream()
 .collect(groupingBy(Trade::getRegion, mapping(Trade::getTradeId, toSet())));
System.out.println(map);

[image: _images/mapping.png]

 10. Handling nulls with Optional

 11. Default and Static methods

11. Default and Static methods

Prior to java8 interfaces were containing only abstract methods but this time you will be able to provide concrete implementations inside interface. Usually interfaces are contracts that defines the set of operations to be supported for a usecase and all of its implementing classes should provide implementations to those abstract methods. When there is a need to provide some basic common functionalities to all implementating classes, the usual approach is to introduce an abstract class which is inherited by all implementating classes rather than directly implementing interface. For example think of Servlet case.

[image: _images/servlet.png]

Servlet defines the contract and GenericServlet were introduced just to provide common functionalties to implementing classes like HttpServlet. This was not the bug but an approach taken in older days. Now java has been evolved a lot to remove this intermedite classes and common operations could be reside inside interfaces.

Java8 has introduced many new methods on existing interfaces such as the sort method in List interface, stream method in Collection etc. Java had always argued that its implementing classes must provide concrete implementation to all non-concrete methods of interface. There are millions of libraries and applications running on java and imagine the problem would have happened with directly adding methods inside interface. Java core designer team had tough time to resolve this issue and finally came up with the solutions to add methods using default keyword.

11.1. Default methods

Default methods enable you to add new functionality to the interfaces of your libraries and ensure binary compatibility with code written for older versions of those interfaces. They provide a default implementation for methods. As a result, existing classes implementing an interface will automatically inherit the default implementations. You specify method definition in an interface is a default method with the default keyword at the beginning of the method signature. All method declarations in an interface including default methods, are implicitly public so you can omit the public modifier.

To get more clear picture let’s discuss the stream method added in Collection interface.

[image: _images/default2.png]

The stream method is required in all List and Set implementations so added in their super interface i.e. Collection. Doing this, stream method will now be directly available to all their implementing classes ArrayList, TreeSet. The default method is not only restricted to jdk but you can also add default methods to your own interfaces.

interface Vehicle {

 default void applyBreak() {
 System.out.println("Applying break.");
 }

 void transport();
}

class GoodsVehicle implements Vehicle {

 @Override
 public void transport() {
 System.out.println("Transporting goods.");
 applyBreak();
 }
}

class PublicTransport implements Vehicle {

 @Override
 public void transport() {
 System.out.println("Transporting people.");
 applyBreak();
 }

}

11.2. Multiple inheritance

You might have heard of the diamond problem w.r.t multiple inheritance in C++ where a class can inherit two methods of the same signature from two different classes. This is the reason that java always avoided multiple inheritance and adopted multilevel inheritance from birth. But introducing default methods it again opened the gate for the same issue. A class is able to implement multiple interfaces even if they contain abstract method with the same name.

public class SampleClass implements A, B {

 @Override
 public void print() {
 System.out.println("SampleClass");
 }

 public static void main(String[] args) {
 A a = new SampleClass();
 a.print();

 B b = new SampleClass();
 b.print();
 }
}

interface A {
 void print();
}

interface B {
 void print();
}

This is possible because the method will be called on a single interface reference at any moment and both interfaces are not interfering each other, they are just individual contracts. But now though interfaces can contain concrete methods, there is the possibility for a class inherits same method from multiple parents. Java-8 acknowledges this conflict with three basic principles.

	A method declared in same class or a superclass wins the priority over any default method defined in the interface.

interface A {
 default String print() {
 return "A";
 }
}

class MyClass {
 public String print() {
 return "MyClass";
 }
}

public class DefaultTest extends MyClass implements A {

 public static void main(String[] args) {
 System.out.println(new DefaultTest().print());
 }
}

Output: MyClass

Here print method is inherited from both MyClass and interface A, but MyClass print method has taken into consideration.

	The method with the same signature in the most specific default-providing interface will take the priority.

interface A {
 default String print() {
 return "A";
 }
}

interface B extends A {
 default String print() {
 return "B";
 }
}

public class DefaultTest implements A, B {

 public static void main(String[] args) {
 System.out.println(new DefaultTest().print());
 }
}

Output: B

Here print method is inherited from both interfaces but interface B extending A so B will be consider most specific or closer and will be considered.

	In case choices are still ambiguous, the class inheriting multiple interfaces has to override the default method and then it can provide its own implementation or can explicitely call any inherited one. To call the super interface method super keyward is used.

interface A {
 default String print() {
 return "A";
 }
}

interface B {
 default String print() {
 return "B";
 }
}

public class DefaultTest implements A, B {

 public String print() {
 return A.super.print();
 }

 public static void main(String[] args) {
 System.out.println(new DefaultTest().print());
 }
}

Output: A

Here DefaultTest class is choosing interface A defined method with the help of super keyword.

11.3. Static methods

In addition to default methods, you can also define static methods in interfaces. (A static method is a method that is associated with the class in which it is defined rather than with any object. Every instance of the class shares its static methods.) This makes it easier for you to organize helper methods in your libraries; you can keep static methods specific to an interface in the same interface rather than in a separate class. For example we have Collection interface and another class Collections that provides various utility methods to deal with Collection implementatios, so this example could be good reason for having static methods in Collection interface but unfortunately it is too late to change.

Like static methods in classes, you specify that a method definition in an interface is a static method with the static keyword at the beginning of the method signature. All method declarations in an interface, including static methods, are implicitly public, so you can omit the public modifier. Through out the tutorial you have seen lot of example of interface static method like Stream.of, Comparator.naturalOrder, Comparator.comparing etc.

interface Comparator {
 public static <T extends Comparable<? super T>> Comparator<T> reverseOrder() {
 return Collections.reverseOrder();
 }
}

 12. ForkJoinPool

12. ForkJoinPool

At the start of the tutorial we discussed- parallelization is almost free, with a small change you can enjoy the benifit of parallel stream processing. The complete parallel stream processing is based on ForkJoinPool concept. ForkJoinPool was delivered with jdk7 which provides a highly specialized ExecutorService. If you recall, we submit multiple indepenedent tasks to ExecutorService which are then executed by pool worker threads. In case of parallel stream we don’t have multiple tasks but there is single complex task of larger size. To execute this big task we have to perform following actions explicitly.

	Divide the big task into smaller sub tasks

	Process all sub tasks independently

	Join the partial results from each sub task

ForkJoinPool internally does all these steps for you. We will typically submit a single task to ForkJoinPool and awaits its completion. The ForkJoinPool and the task itself work together to divide and conquer the problem. Any problems that can be recursively divided and executed independently can be a candidature for Fork-Join.

12.1. ForkJoinPool creation

Creating ForkJoinPool is simple, call its no-arg constructor to create an instance that will internally use Runtime.availableProcessors() method to determine number of worker threads (ForkJoinWorkerThread) to be used by the pool. It also provides an overloaded ForkJoinPool(int parallelism) constructor that allows user to override the number of threads to be created. Usually you shouldn’t override the number of threads unless you have a strong reason to do it.

Though it internally uses the number of processors (cores) available to create the worker threads, we should always create a single instance of ForkJoinPool through out the application and different kinds of tasks should be submitted to the same pool. Its implementation restricts the maximum number of running threads to 32767 and attempting to create pools with greater than this size will result to IllegalArgumentException.

Note

The level of parallelism can also be controlled globally by setting java.util.concurrent.ForkJoinPool.common.parallelism system property which will affect every ForkJoinPool creation in your application.

12.2. ForkJoinTask

As like Callable and Runnable in ThreadPoolExecutor, fork-join accepts a type of ForkJoinTask instance for the execution. The abstract base class ForkJoinTask is an implementation of java.util.concurrecnt.Future that provides common functionalities to its subclasses. It again offers two more abstract subclasses: RecursiveAction and RecursiveTask which has only one abstract method called “compute()”. There is no difference between these two classes except RecursiveTask can return result where as RecursiveAction can not. You can assume RecursiveTask is an example of finding largest number from an array where as RecursiveAction is to sort an array which doesn’t require to return any result.

ForkJoinTask has large set of methods but the methods we will be using most of the time are: fork(), compute(), join(). The compute method will contain the actual computational logic to be performed by the worker threads. The following is the pseudo code of the compute method.

if(Task is small) {
 Execute the task

} else {
 //Split the task into smaller chunks
 ForkJoinTask first = getFirstHalfTask();
 first.fork();
 ForkJoinTask second = getSecondHalfTask();
 second.compute();
 first.join();
}

The idea behind the fork-join is to divide the task into smaller chunks and execute them independently. The compute method is responsible to split the task if it is not small enough to execute. In the pseudo code we have split the task into two but it can be split into more also. When you call fork on the first task it will be pushed into the queue and may be executed by some other thread, then you call compute method on second. After the completion of second task we will call join on the first task to wait for its completion. Below is a complete example that demonstrates finding the largest element in an array.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	public class ForkJoinPoolTest {

 public static void main(String[] args) {
 int[] array = yourMethodToGetData();

 ForkJoinPool pool = new ForkJoinPool();
 Integer max = pool.invoke(new FindMaxTask(array, 0, array.length));
 System.out.println(max);
 }

 static class FindMaxTask extends RecursiveTask<Integer> {

 private int[] array;
 private int start, end;

 public FindMaxTask(int[] array, int start, int end) {
 this.array = array;
 this.start = start;
 this.end = end;
 }

 @Override
 protected Integer compute() {
 if (end - start <= 3000) {
 int max = -99;
 for (int i = start; i < end; i++) {
 max = Integer.max(max, array[i]);
 }
 return max;

 } else {
 int mid = (end - start) / 2 + start;
 FindMaxTask left = new FindMaxTask(array, start, mid);
 FindMaxTask right = new FindMaxTask(array, mid + 1, end);

 ForkJoinTask.invokeAll(right, left);
 int leftRes = left.getRawResult();
 int rightRes = right.getRawResult();

 return Integer.max(leftRes, rightRes);
 }
 } //end of compute

 }
}

Here rather than calling fork, compute and join separately, we used invokeAll method which internally performs the same. There is no rule to define what is the size of the smaller chunk task, but the task should not be very small such that it will loose benifits of parallelism.

12.3. How fork-join works?

ForkJoinPool has array of DEqueues (WorkerQueue) which will be shared by all the worker threads. You can assume it is a single shared task queue that is usually used in normal ExecutorServices. Each DEQueue is belongs to one worker thread who will be the owner for that queue. Every time fork is called on a task will be pushed into its own queue. Each thread repeatedly removes a task from its own DEQueue and runs it. DEQueue support three functions: push, pop and poll where push and pop methods will be called by owner thread only and poll will be called by other threads. If any time a thread discovers its queue is empty then it becomes a theaf: it chooses a victim thread at random and calls that queue’s poll method to steal a task for itself. This process is called work stealing.

[image: _images/forkjoin_1.png]
Internals of ForkJoinPool

Initially , only a single thread in a ForkJoinPool will be busy when you submit a task. The thread will begin to subdivide the larger task into smaller tasks. Each time a task is divided into two or more tasks, we fork the every new subtask except the last one we compute. After the computation we invoke join to wait for the forked tasks to complete. This divide-and-conquer process continues till all the tasks are executed, and all queues become empty. More generally this work stealing algorithm is used to redistribute and balance the tasks among the worker threads in the pool. Below figure shows how this process occurs.

[image: _images/forkjoin_2.png]
Splitting of tasks

 13. Parallel Data Processing

13. Parallel Data Processing

Compare to earlier days, cost of the hardwares have been reduced and the number of processors (cores) in modern computers are also increased. Each core has ability to perform operations independently. Before Java 7, processing a collection of data in parallel was extreamly cumbersome. First you have to split the complete data set into sub parts and asks the threads to execute them parallelly. In the last chapter we saw how ForkJoinPool perform these operations more consistently and in less error-prone way. To gain better understanding of prallel processing it is important to know how parallel stream works internally. I will strongly recommend you to go through fork-join-pool chapter if you have missed it.

13.1. Parallel Streams

A parallel Stream is a stream that splits its elements into multiple chunks, process each chunk with different thread. Thus you can automatically partition the workload of a given operation on all the cores of your multicore processor and keep all of them equally busy. Getting parallel stream is very easy, just calling parallelStream() method on collection classes or parallel() method on sequential stream returns a parallel stream as demonstrated below.

List<String> list = getDataSet();
list.parallelStream().forEach(System.out::println);

int[] array = {1, 2, 3, 4, 5};
int sum = Arrays.stream(arr).parallel().sum();

Similarly stream also has sequential() method that converts parallel stream into sequential stream. In reality stream class maintains an internal boolean state to identify the stream is a parallel stream. Due to this calling parallel() and sequential() methods multiple times on a stream will not throw any exception. In the below example the last call to parallel() wins the priority.

stream.parallel()
 .filter(...)
 .sequential()
 .map(...)
 .parallel()
 .sum();

By now you already have idea that tasks are divided and processed individually in parallel stream. Now let’s see how parallel stream internally works. To understand it better we will see following example to find largest element in an array.

int max = numbers.parallelStream().reduce(0, Integer::max, Integer::max);
System.out.println("Parallel: " + max);

Here to the reduce method we are passing a BiFunction (2nd argument) which represents the task to be performed when the task become too small and can be executed without splitting again. The last argument is a BinaryOperator shows the action should taken on the two partial results collected from sub tasks. If you want to know about Stream.reduce method please refer the Stream chapter. Below is the call stack of parallelStream() method.

parallelStream()

StreamSupport.stream(spliterator(), true);

ArrayList.spliterator()

ArrayListSpliterator<>();

Parallelstream() calls spliterator() on the collection object which returns a Spliterator implementation that provides the logic of splitting a task. Every source or collection has their own spliterator implementations. Using these spliterators, parallel stream splits the task as much as possible and finally when the task becomes too small executes it sequentially and merges partial results from all the sub tasks.

13.2. Spliterator

Spliterator is the new interface introduced in jdk8 that traverses and partitions elements of a source. The name itself suggests that, these are the iterators that can be splitted as and when require. As like Iterator, Spliterator is also used for traversing elements but meant to be used within stream only. Spliterator has defined some important methods that drives both sequential and parallel stream processing.

public interface Spliterator<T> {

 boolean tryAdvance(Consumer<T> action);
 default void forEachRemaining(Consumer<T> action);
 Spliterator<T> trySplit();
 long estimateSize();
 int characteristics();
}

	tryAdvance method is used to consume an element of the spliterator. This method returns either true indicating still more elements exist for processing otherwise false to signify all the elements of the spliterator is processed and can be exited.

	forEachRemaining is a default method indicates spliterator to take certain action when no more splitting require. Basically this performs the given action for each remaining element, sequentially in the current thread, until all elements have been processed.

default void forEachRemaining(Consumer<T> action) {
 do {

 } while (tryAdvance(action));
}

If you see the forEachRemaining method default implementation, it repeatedly calls the tryAdvance method to process the spliterator elements sequentially. While splitting task when a spliterator finds itself to be small enough that can be executed sequentially then it calls forEachRemaining method on its elements.

	trySplit is used to partition off some of its elements to second spliterator allowing both of them to process parallelly. The idea behind this splitting is to allow balanced parallel computation on a data structure. These spliterators repeatedly calls trySplit method unless spliterator returns null indiacating end of splitting process.

	estimateSize returns an estimate of the number of elements available in spliterator. Usually this method is called by some forkjoin tasks like AbstractTask to check size before calling trySplit.

	characteristics method reports a set of characteristics of its structure, source, and elements among ORDERED, DISTINCT, SORTED, SIZED, NONNULL, IMMUTABLE, CONCURRENT, and SUBSIZED. These helps the Spliterator clients to control, specialize or simplify computation. For example, a Spliterator for a Collection would report SIZED, a Spliterator for a Set would report DISTINCT, and a Spliterator for a SortedSet would also report SORTED.

You saw detailed descriptions on spliterator defined methods, now we will see a complete example that will deliver more context on how does they work.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	public class SpliteratorTest {

 public static void main(String[] args) {
 Random random = new Random(100);
 int[] array = IntStream.rangeClosed(1, 1_000_000).map(random::nextInt)
 .map(i -> i * i + i).skip(20).toArray();
 int max = StreamSupport.stream(new FindMaxSpliterator(array, 0, array.length - 1), true)
 .reduce(0, Integer::max, Integer::max);
 System.out.println(max);
 }

 private static class FindMaxSpliterator implements Spliterator<Integer> {
 int start, end;
 int[] arr;

 public FindMaxSpliterator(int[] arr, int start, int end) {
 this.arr = arr;
 this.start = start;
 this.end = end;
 }

 @Override
 public boolean tryAdvance(Consumer<? super Integer> action) {
 if (start <= end) {
 action.accept(arr[start]);
 start++;
 return true;
 }
 return false;
 }

 @Override
 public Spliterator<Integer> trySplit() {
 if (end - start < 1000) {
 return null;
 }

 int mid = (start + end) / 2;
 int oldstart = start;
 start = mid + 1;
 return new FindMaxSpliterator(arr, oldstart, mid);
 }

 @Override
 public long estimateSize() {
 return end - start;
 }

 @Override
 public int characteristics() {
 return ORDERED | SIZED | IMMUTABLE | SUBSIZED;
 }
 }
}

The FindMaxSpliterator is trying to find out the largest element in an array. Every time trySplit method checks the remaining size of the elements in current spliterator and creates a second spliterator if size is more than 1000. Once the elements size reaches under 1000, it calls tryAdvance method repeatedly on those 1000 (may be less) elements.

[image: _images/parallel_proc_1.png]
Spliterator Workflow

13.3. Conclusion

Parallel stream make use of both ForkJoinPool and Spliterator to process elements parallelly. It is not the wise decision to use parallel stream all the time without comparing running time between sequential and parallel processing. In the above example we have considered 1_000_000 number of elements which is quite huge and can make sense if executing in parallel, but suppose there were only 5000 elements then parallel stream will give you higher running time compared to sequential because it also includes the time taken for spitting and merging the partial results.

 14. Evolution of date time API

 Index

Index

_static/parallel_reduction.png
Stream of words

2 N
G & | | G

+ + +
13 11 13
i

+2

BinaryOperator ‘

_static/plus.png

_static/parallel_proc_1.png
C st)

estimateSize
>0

S PR—

trySplit 1= null

false °
™

true

true

creates a new spliterator
and runs it parallely

_static/servlet.png
javax.servietServiet (1)

A

GenericServlet ()

HitpServiet (C)

_static/stream_ops.png
Stream Operations

Intermediate Ops Terminal Ops Short-circuiting
filter() collect() limit()
map() reduce() findFirst()
peek() max() findAny()
boxed() min()

_static/reduce1.png

_images/collectingandthen.png
Grouping

!

Map<String, List<Trade>>

collectingAndThen block

)

her ‘

Trade

_images/default2.png
default Stream<E> stream() {
return StreamSupport.stream(spliterator(), false);

}

_static/temporal.png
TemporalAccessor

Temporal

I}

LocalDate LocalTime LocalDateTime Instant

[interface

_static/up-pressed.png

_images/flatmap.png
Stream of words stream of words

Note: "W represents a word.

_images/flatmap1.png
public<U> Optional<U> map(Function<? super T, ? extends U> mapper) (
return Optional.cfNullable (mapper.apply (value))

public<U> Optional<U> flatMap(Function<? super T, Optional<U>> mapper) {
return Objects.requireNonNull (mapper.apply (value)

_images/forkjoin_1.png
DQ1

DQ2

DQ3

DQ-N

SN

Array of share DEqueues

push

| pop

polling when empt

ForkJoinPool

nav.xhtml

 Table of Contents

 		
 Welcome to Java 8 tutorial!

 		
 Quick Introduction

 		
 Behavior Parameterization

 		
 Lambdas

 		
 Type Inferencing

 		
 Accessing outer scope variables

 		
 Restrictions in Lambdas

 		
 Where to use Lambdas

 		
 Functional Interfaces

 		
 @FunctionalInterface rules

 		
 Predicate<T>

 		
 Consumer<T>

 		
 Function<T, R>

 		
 Supplier<T>

 		
 Primitive Functional Interfaces

 		
 Method References

 		
 Constructor as method reference

 		
 Introduction to Streams

 		
 Stream vs Collection

 		
 Stream sources

 		
 Stream Operations

 		
 Stream API

 		
 Filtering

 		
 Truncating Stream

 		
 Consuming Stream

 		
 Mapping

 		
 Matching

 		
 Finding element

 		
 Stream Reduction

 		
 To Array

 		
 Infinite Streams

 		
 Comparator

 		
 Comparators

 		
 Updates in Comparator

 		
 Collectors

 		
 How Collector works?

 		
 Implementing collectors

 		
 Predefined Collectors

 		
 Collecting as collections

 		
 Strings joining

 		
 Grouping elements

 		
 Partitioning elements

 		
 Reducing collectors

 		
 Arithmetic & Summerizing

 		
 Miscellaneous

 		
 Handling nulls with Optional

 		
 Optional Construction

 		
 Operating on Optionals

 		
 Retrieving from Optionals

 		
 Miscellaneous

 		
 Default and Static methods

 		
 Default methods

 		
 Multiple inheritance

 		
 Static methods

 	